Computation of Mixed Type Functional Differential Boundary Value Problems

نویسندگان

  • Kate A. Abell
  • Christopher E. Elmer
  • A. R. Humphries
  • Erik S. Van Vleck
چکیده

Abstract. We study boundary value differential-difference equations where the difference terms may contain both advances and delays. Special attention is paid to connecting orbits, in particular to the modeling of the tails after truncation to a finite interval, and we reformulate these problems as functional differential equations over a bounded domain. Connecting orbits are computed for several such problems including discrete Nagumo equations, an Ising model and Frenkel-Kontorova type equations. We describe the collocation boundary value problem code used to compute these solutions, and the numerical analysis issues which arise, including linear algebra, boundary functions and conditions, and convergence theory for the collocation approximation on finite intervals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

Solutions for some non-linear fractional differential equations with boundary value problems

In recent years, X.J.Xu [1] has been proved some results on mixed monotone operators.  Following the paper of X.J.Xu, we study the existence and uniqueness of the positive solutions for non-linear differential equations with boundary value problems. 

متن کامل

Solutions of initial and boundary value problems via F-contraction mappings in metric-like space

We present sufficient conditions for the existence of solutions of second-order two-point boundary value and fractional order functional differential equation problems in a space where self distance is not necessarily zero. For this, first we introduce a Ciric type generalized F-contraction and F- Suzuki contraction in a metric-like space and give relevance to fixed point results. To illustrate...

متن کامل

On boundary value problems of higher order abstract fractional integro-differential equations

The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main resu...

متن کامل

A MIXED PARABOLIC WITH A NON-LOCAL AND GLOBAL LINEAR CONDITIONS

Krein [1] mentioned that for each PD equation we have two extreme operators, one is the minimal in which solution and its derivatives on the boundary are zero, the other one is the maximal operator in which there is no prescribed boundary conditions. They claim it is not possible to have a related boundary value problem for an arbitrarily chosen operator in between. They have only considered lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Applied Dynamical Systems

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2005